已知函数fx=2cos²x+cos(2x+π/3)-1。求函数的周期和单调递增区间。若锐角α满足f

α=-3/2,求α的值... α=-3/2,求α的值 展开
 我来答
枯藤醉酒
2014-06-30 · TA获得超过6.4万个赞
知道大有可为答主
回答量:1.3万
采纳率:91%
帮助的人:1459万
展开全部
1)f(x)=2cos^2x+cos(2x+π/3)-1
=cos2x+cos2xcosπ/3-sin2xsinπ/3
=cos2x+1/2cos2x-√3/2sin2x
=3/2cos2x-√3/2sin2x
=√3(cos2xcosπ/6-sin2xsinπ/6)
=√3cos(2x+π/6)
所以最小值周期T=2π/w=2π/2=π
因为当(2x+π/6)∈(2kπ-π,2kπ)时,f(x)单调递增
此时x∈(kπ-7π/12,kπ-π/12)
所以f(x)单调增区间为(kπ-7π/12,kπ-π/12)(k∈Z)
2)f(a)=√3cos(2a+π/6)=-3/2
则cos(2x+π/6)=-√3/2
即2x+π/6=kπ+5π/6
x=kπ/2+π/3 (k∈Z)
因为a为锐角
所以a=π/3

同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式