线性代数:等价,相似都有啥区别?
相似是更特殊的等价,所包含的本质属性更多。
在一个给定的集合S上,我们可以定义元素之间的某种关系。如果该关系满足三个性质:(1)自反性(2)对称性(3)传递性,我们称该关系为等价关系。
等价具有反身性:即对任意矩阵A,有A与A等价。
对称性:若A与B等价,则B与A等价。
传递性:若A与B等价,B与C等价,则A与C等价。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程。
空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。
关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。