已知圆O1:x2+y2-4x+3=0,O2:x2+y2+4x-45=0,圆心为P的动圆C与圆O1外切,且与圆O2内切.(Ⅰ)判断点P的
已知圆O1:x2+y2-4x+3=0,O2:x2+y2+4x-45=0,圆心为P的动圆C与圆O1外切,且与圆O2内切.(Ⅰ)判断点P的轨迹为何种曲线,并求出其方程;(Ⅱ)...
已知圆O1:x2+y2-4x+3=0,O2:x2+y2+4x-45=0,圆心为P的动圆C与圆O1外切,且与圆O2内切.(Ⅰ)判断点P的轨迹为何种曲线,并求出其方程;(Ⅱ)已知点M(2,3),点N(2,1),若平行于ON(O为坐标原点)的直线l1交点P的轨迹于A、B两点,求证:直线MA、MB与x轴始终围成一个等腰三角形.
展开
展开全部
(Ⅰ)设动圆半径为r,则
圆O1:x2+y2-4x+3=0,可化为(x-2)2+y2=1;O2:x2+y2+4x-45=0,可化为(x+2)2+y2=49,
∵圆心为P的动圆C与圆O1外切,且与圆O2内切,
∴|PO2|=7-r,|PO1|=1+r,
∴|PO2|+|PO1|=8>4=|O1O2|,
∴点P的轨迹是以O1,O2为焦点的椭圆,且a=4,c=2,
∴b=
=2
,
∴椭圆方程为
+
=1;
(Ⅱ)证明:由直线l∥ON,设l:y=
x+m,
将式子代入椭圆C得:x2+mx+m2-12=0,
设A(x1,y1),B(x2,y2),则x1+x2=-m,x1x2=m2-12,
设直线MA、MB的斜率分别为k1,k2,
则k1+k2=
+
=
=0,
故直线MA、MB与x轴围成一个等腰三角形.
圆O1:x2+y2-4x+3=0,可化为(x-2)2+y2=1;O2:x2+y2+4x-45=0,可化为(x+2)2+y2=49,
∵圆心为P的动圆C与圆O1外切,且与圆O2内切,
∴|PO2|=7-r,|PO1|=1+r,
∴|PO2|+|PO1|=8>4=|O1O2|,
∴点P的轨迹是以O1,O2为焦点的椭圆,且a=4,c=2,
∴b=
a2?c2 |
3 |
∴椭圆方程为
x2 |
16 |
y2 |
12 |
(Ⅱ)证明:由直线l∥ON,设l:y=
1 |
2 |
将式子代入椭圆C得:x2+mx+m2-12=0,
设A(x1,y1),B(x2,y2),则x1+x2=-m,x1x2=m2-12,
设直线MA、MB的斜率分别为k1,k2,
则k1+k2=
y1?3 |
x1?2 |
y2?3 |
x2?2 |
x1x2+(m?4)(x1+x2)?4m+12 |
(x1?2)(x2?2) |
故直线MA、MB与x轴围成一个等腰三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询