如图,在?ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;

如图,在?ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说... 如图,在?ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说明. 展开
 我来答
天宇5225
推荐于2016-06-29 · TA获得超过187个赞
知道答主
回答量:137
采纳率:85%
帮助的人:63.5万
展开全部
解:
(1)方法一:如图①,
∵在?ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.(1分)
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.(2分)
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.(3分)
∴∠AMB=90°.
∴AE⊥BF.(4分)
方法二:如图②,延长BC、AE相交于点P,
∵在?ABCD中,AD∥BC,
∴∠DAP=∠APB.(1分)
∵AE平分∠DAB,
∴∠DAP=∠PAB.(2分)
∴∠APB=∠PAB.
∴AB=BP.(3分)
∵BF平分∠ABP,
∴AP⊥BF,
即AE⊥BF.(4分)

(2)方法一:线段DF与CE是相等关系,即DF=CE,(5分)
∵在?ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.
∴∠DEA=∠DAE.
∴DE=AD.(6分)
同理可得,CF=BC.(7分)
又∵在?ABCD中,AD=BC,
∴DE=CF.
∴DE-EF=CF-EF.
即DF=CE.(8分)
方法二:如图,延长BC、AE设交于点P,延长AD、BF相交于点O,
∵在?ABCD中,AD∥BC,
∴∠DAP=∠APB.
∵AE平分∠DAB,
∴∠DAP=∠PAB.
∴∠APB=∠PAB.
∴BP=AB.
同理可得,AO=AB.
∴AO=BP.(6分)
∵在?ABCD中,AD=BC,
∴OD=PC.
又∵在?ABCD中,DC∥AB,
∴△ODF∽△OAB,△PCE∽△PBA.(7分)
OD
OA
=
DF
AB
PC
PB
=
EC
AB

∴DF=CE.(8分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式