(2014?宜昌)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t
(2014?宜昌)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD...
(2014?宜昌)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.(1)填空:△AOB≌△______≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,______);(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2-12t,顶点随着t的增大向上移动时,求t的取值范围.
展开
1个回答
展开全部
解:(1)如图,∵∠DNA=∠AOB=90°,
∴∠NAD=∠OBA(同角的余角相等).
在△AOB与△DNA中,
,
∴△AOB≌△DNA(SAS).
同理△DNA≌△BMC.
∵点P(0,4),AP=t,
∴OA=OP-AP=4-t.
故答案是:DNA或△DPA;4-t;
(2)由题意知,NA=OB=t,则OA=4-t.
∵△AOB≌△BMC,
∴CM=OB=t,
∴OM=OB+BM=t+4-t=4,
∴C(4,t).
又抛物线y=ax2+bx+c过点O、C,
∴
,
解得 b=
t-4a;
(3)当t=1时,抛物线为y=ax2+(
-4a)x,NA=OB=1,OA=3.
∵△AOB≌△DNA,
∴DN=OA=3,
∵D(3,4),
∴直线OD为:y=
x.
联立方程组,得
,
消去y,得
ax2+(-
-4a)x=0,
解得 x=0或x=4+
∴∠NAD=∠OBA(同角的余角相等).
在△AOB与△DNA中,
|
∴△AOB≌△DNA(SAS).
同理△DNA≌△BMC.
∵点P(0,4),AP=t,
∴OA=OP-AP=4-t.
故答案是:DNA或△DPA;4-t;
(2)由题意知,NA=OB=t,则OA=4-t.
∵△AOB≌△BMC,
∴CM=OB=t,
∴OM=OB+BM=t+4-t=4,
∴C(4,t).
又抛物线y=ax2+bx+c过点O、C,
∴
|
解得 b=
1 |
4 |
(3)当t=1时,抛物线为y=ax2+(
t |
4 |
∵△AOB≌△DNA,
∴DN=OA=3,
∵D(3,4),
∴直线OD为:y=
4 |
3 |
联立方程组,得
|
消去y,得
ax2+(-
13 |
12 |
解得 x=0或x=4+