
已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,若曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则
已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,若曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2012x1+log2012x2+…+log...
已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,若曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2012x1+log2012x2+…+log2012x2011=( )A.-log20122011-2B.-1C.log20122011-1D.1
展开
1个回答
展开全部
由题意可得P(1,1)
对函数f(x)=xn+1求导可得,f′(x)=(n+1)xn
∴y=f(x)在点P处的切线斜率K=f′(1)=n+1,切线方程为y-1=(n+1)(x-1)
令y=0可得,xn=
∴x1x2…x2011=
?
?
…
=
∴log2012x1+log2012x2+…+log2012x2011=log2012(x1x2…xn)
=log2012
=?1
故选B
对函数f(x)=xn+1求导可得,f′(x)=(n+1)xn
∴y=f(x)在点P处的切线斜率K=f′(1)=n+1,切线方程为y-1=(n+1)(x-1)
令y=0可得,xn=
n |
n+1 |
∴x1x2…x2011=
1 |
2 |
2 |
3 |
3 |
4 |
2011 |
2012 |
1 |
2012 |
∴log2012x1+log2012x2+…+log2012x2011=log2012(x1x2…xn)
=log2012
1 |
2012 |
故选B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询