已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与

已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与A、C重合),EF⊥AB,垂足为F.(1)求证... 已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与A、C重合),EF⊥AB,垂足为F.(1)求证:AD=DB;(2)设CE=x,BF=y,求y关于x的函数解析式;(3)当∠DEF=90°时,求BF的长? 展开
 我来答
手机用户36767
2014-08-11 · 超过53用户采纳过TA的回答
知道答主
回答量:96
采纳率:0%
帮助的人:131万
展开全部
(1)证明:在△ABC中,∵∠C=90°,∠B=30°,
∴∠CAB=60°,
又∵AD平分∠CAB,
∴∠DAB=∠DAC=
1
2
∠CAB=30°,
∴∠DAB=∠B,
∴AD=DB.

(2)解:在△AEF中,∵∠AFE=90°,∠EAF=60°,
∴∠AEF=30°,
∴AE=AC-EC=6-x,AF=
1
2
AE=
1
2
(6?x)

在Rt△ABC中,∵∠B=30°,AC=6,
∴AB=12,
∴BF=AB-AF=12-
1
2
(6?x)=9+
1
2
x,
∴y=9+
1
2
x,
答:y关于x的函数解析式是y=9+
1
2
x(0<x<6).

(3)解:当∠DEF=90°时,∠CED=180°-∠AEF-∠FED=60°,
∴∠EDC=30°,ED=2x,
∵∠C=90°,∠DAC=30°,
∴∠ADC=60°,
∴∠EDA=60°-30°=30°=∠DAE,
∴ED=AE=6-x.
∴有2x=6-x,得x=2,
此时,y=9+
1
2
×2=10,
答:BF的长为10.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式