已知各项均为正数的数列{an}的前n项和为Sn,满足8Sn=an2+4an+3(n∈N*),且a1,a2,a7依次是等比数列{bn}
已知各项均为正数的数列{an}的前n项和为Sn,满足8Sn=an2+4an+3(n∈N*),且a1,a2,a7依次是等比数列{bn}的前三项.(1)求数列{an}及{bn...
已知各项均为正数的数列{an}的前n项和为Sn,满足8Sn=an2+4an+3(n∈N*),且a1,a2,a7依次是等比数列{bn}的前三项.(1)求数列{an}及{bn}的通项公式;(2)是否存在常数a>0且a≠1,使得数列{an-logabn}(n∈N*)是常数列?若存在,求出a的值;若不存在,说明理由.
展开
1个回答
展开全部
(1)∵8Sn=an2+4an+3,①
∴8a1=a12+4a1+3.
解之,得a1=1,或a1=3.…(2分)
又8Sn-1=an-12+4an-1+3(n≥2),②
由①-②,得 8an=(an2-an-12)+4(an-an-1),即(an+an-1)(an-an-1-4)=0.
∵各项均为正数则an+an-1>0,∴an-an-1=4(n≥2).…(5分)
当a1=1时,a2=5,a7=25.a1,a2,a7成等比数列,
∴an=4n-3,bn=5n-1
当a1=3时,a2=7,a7=27,有 不构成等比数列,舍去.
(2)满足条件的a存在,a=
由(1)知,an=4n-3,bn=5n-1从而
an-logabn=4n-3-loga5n-1=(4-loga5)n-3+loga5
由题意得4-loga5=0
∴a=
∴8a1=a12+4a1+3.
解之,得a1=1,或a1=3.…(2分)
又8Sn-1=an-12+4an-1+3(n≥2),②
由①-②,得 8an=(an2-an-12)+4(an-an-1),即(an+an-1)(an-an-1-4)=0.
∵各项均为正数则an+an-1>0,∴an-an-1=4(n≥2).…(5分)
当a1=1时,a2=5,a7=25.a1,a2,a7成等比数列,
∴an=4n-3,bn=5n-1
当a1=3时,a2=7,a7=27,有 不构成等比数列,舍去.
(2)满足条件的a存在,a=
4 | 5 |
由(1)知,an=4n-3,bn=5n-1从而
an-logabn=4n-3-loga5n-1=(4-loga5)n-3+loga5
由题意得4-loga5=0
∴a=
4 | 5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询