(2004?湖南)如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E是PD的中点.(I
(2004?湖南)如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E是PD的中点.(I)证明PA⊥平面ABCD,PB∥平面...
(2004?湖南)如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E是PD的中点.(I)证明PA⊥平面ABCD,PB∥平面EAC;(II)求以AC为棱,EAC与DAC为面的二面角θ的正切值.
展开
1个回答
展开全部
(Ⅰ)证明:因为底面ABCD是菱形,∠ABC=60°,
所以AB=AD=AC=a,
在△PAB中,由PA2+AB2=2a2=PB2知PA⊥AB.
同理,PA⊥AD,所以PA⊥平面ABCD.
因为
=
+
+
=2
+
+
=(
+
)+(
所以AB=AD=AC=a,
在△PAB中,由PA2+AB2=2a2=PB2知PA⊥AB.
同理,PA⊥AD,所以PA⊥平面ABCD.
因为
PB |
PD |
DC |
CB |
ED |
DC |
DA |
ED |
DA |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|