设函数f(x)=(x-a)ex+(a-1)x+a,a∈R. (2)设g(x)是f(x)的导函数,
设函数f(x)=(x-a)ex+(a-1)x+a,a∈R.(2)设g(x)是f(x)的导函数,证明:当a>2时,在(0,+∞)上恰有一个x0使得g(x0)=0;(2)证明...
设函数f(x)=(x-a)ex+(a-1)x+a,a∈R.
(2)设g(x)是f(x)的导函数,证明:当a>2时,在(0,+∞)上恰有一个x0使得g(x0)=0;
(2)证明:(ⅰ)g(x)=f'(x)=ex(x-a+1)+(a-1),g'(x)=ex(x-a+2)------------------(5分)
当g'(x)<0时,x<a-2;当g'(x)>0时,x>a-2
因为a>2,所以函数g(x)在(0,a-2)上递减;在(a-2,+∞)上递增-----------------(7分)
又因为g(0)=0,g(a)=ea+a-1>0,
所以在(0,+∞)上恰有一个x0使得g(x0)=0.
为什么a>2 .减区间就是(0,a -2)而不是(-无穷,a-2),还有最后的结果,为什么g(0)=0,g(a)>0便可得出结论呢? 展开
(2)设g(x)是f(x)的导函数,证明:当a>2时,在(0,+∞)上恰有一个x0使得g(x0)=0;
(2)证明:(ⅰ)g(x)=f'(x)=ex(x-a+1)+(a-1),g'(x)=ex(x-a+2)------------------(5分)
当g'(x)<0时,x<a-2;当g'(x)>0时,x>a-2
因为a>2,所以函数g(x)在(0,a-2)上递减;在(a-2,+∞)上递增-----------------(7分)
又因为g(0)=0,g(a)=ea+a-1>0,
所以在(0,+∞)上恰有一个x0使得g(x0)=0.
为什么a>2 .减区间就是(0,a -2)而不是(-无穷,a-2),还有最后的结果,为什么g(0)=0,g(a)>0便可得出结论呢? 展开
3个回答
展开全部
(2)证明:(ⅰ)g(x)=f'(x)=ex(x-a+1)+(a-1),g'(x)=ex(x-a+2)------------------(5分)
当g'(x)<0时,x<a-2;当g'(x)>0时,x>a-2
因为a>2,所以函数g(x)在(0,a-2)上递减;在(a-2,+∞)上递增-----------------(7分)
又因为g(0)=0,g(a)=ea+a-1>0,
所以在(0,+∞)上恰有一个x0使得g(x0)=0.--------------------------------------------------(9分)
望采纳 谢谢
当g'(x)<0时,x<a-2;当g'(x)>0时,x>a-2
因为a>2,所以函数g(x)在(0,a-2)上递减;在(a-2,+∞)上递增-----------------(7分)
又因为g(0)=0,g(a)=ea+a-1>0,
所以在(0,+∞)上恰有一个x0使得g(x0)=0.--------------------------------------------------(9分)
望采纳 谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询