设数列{an}的前n项和为Sn,a1=1,且数列{Sn}是以2为公比的等比数列
展开全部
第一问:
根据等比数列的定义:
an=a1*q^(n-1);
所以
an=2^(n-1)
第二问:
根据数列前n项和得定义及公式:
a1*(1-q^n)/(1-q)
答案为:
(1-2^(2n+1))/(1-2)=2^(2n+1)-1
根据等比数列的定义:
an=a1*q^(n-1);
所以
an=2^(n-1)
第二问:
根据数列前n项和得定义及公式:
a1*(1-q^n)/(1-q)
答案为:
(1-2^(2n+1))/(1-2)=2^(2n+1)-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对上个答案不完全认同
(1)a1=S1=1 所以Sn=2^(n-1)
因为an=Sn-Sn-1(n》2)
所以an=1(n=1)或者2^n-2(n》2)
(2)1+1+2+4+....+2^(2n-2)
=1+(1-2^2n)/(1-2)
=2^2n=4^n
(1)a1=S1=1 所以Sn=2^(n-1)
因为an=Sn-Sn-1(n》2)
所以an=1(n=1)或者2^n-2(n》2)
(2)1+1+2+4+....+2^(2n-2)
=1+(1-2^2n)/(1-2)
=2^2n=4^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询