ln(1-x╱1+x)的图像?
ln(1+x)的图像如下图:
y=ln(1+x)是由y=lnx的函数图像向左边平移一个单位得到的。即y=lnx向左平移1单位,x变成x+1,其他地方不变。
根据这个定义立刻可以知道
并且根据可导必连续的性质,lnx在(0,+∞)上处处连续、可导。其导数为1/x>0,所以在(0,+∞)单调增加。
扩展资料
对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。
因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=N可以与x=㏒aN互推。
关于y=x对称。
无限逼近x=1和x=-1
要使函数有意义
则:[(1-x)/(1+x)]>0
等价于(1-x)(1+x)>0
等价于1<x<1
所以函数的定义域是(-1,1)
设在定义域内x1<x2
f(x1)-f(x2)=ln[(1-x1)/(1+x1)]-ln[(1-x2)/(1+x2)]=ln[(1-x1)/(1+x1)x(1+x2)/(1-x2)]
分三种情况:
当x1<0,x2<0时ln[(1-x1)/(1+x1)x(1+x2)/(1-x2)]>0
当x1<0,x2>0时ln[(1-x1)/(1+x1)x(1+x2)/(1-x2)]>0
当x1>0,x2>0时ln[(1-x1)/(1+x1)x(1+x2)/(1-x2)]>0
所以f(x1)>f(x2)
所以是减函数。[注意x1,x2都是在(-1,1)讨论的正负]
综上:满足定义域是(-1,1)且在(-1,1)上递减的