一道数学小题.
展开全部
sinα=3/5,α属于(π/2,π)则cosα=-4/5
cos(π/4+α)sin(π/4+α)=cos(π/4+α)+sin(π/4+α)
= √2 * [(√2 /2)√cos(π/4+α) + (√2/2)sin(π/4+α)]
= √2 * [cos(π/4)cos(π/4+α) + sin(π/4)sin(π/4+α)]
= √2 * cos[(π/4+α) - (π/4)]
= √2 cosα =-4√2/5
cos(π/4+α)sin(π/4+α)=cos(π/4+α)+sin(π/4+α)
= √2 * [(√2 /2)√cos(π/4+α) + (√2/2)sin(π/4+α)]
= √2 * [cos(π/4)cos(π/4+α) + sin(π/4)sin(π/4+α)]
= √2 * cos[(π/4+α) - (π/4)]
= √2 cosα =-4√2/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
7/50
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sinα=3/5
cos(π/4+α)sin(π/4+α)
=1/2*sin(π/2+2α)
=1/2*cos(2α)
=1/2*(1-2*sinα*sinα)
=1/2*(1-2*3/5*3/5)
=7/50
cos(π/4+α)sin(π/4+α)
=1/2*sin(π/2+2α)
=1/2*cos(2α)
=1/2*(1-2*sinα*sinα)
=1/2*(1-2*3/5*3/5)
=7/50
参考资料: 半角公式、余弦公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询