任意给出5个整数,证明: 1、从中必能选出2个整数,使它们的差能被3整除。

任意给出5个整数,证明:1、从中必能选出2个整数,使它们的差能被3整除。2、从中必能选出3个整数,使它们的和能被2整除。... 任意给出5个整数,证明:

1、从中必能选出2个整数,使它们的差能被3整除。2、从中必能选出3个整数,使它们的和能被2整除。
展开
 我来答
齐停之
2017-09-08
知道答主
回答量:8
采纳率:0%
帮助的人:3.7万
展开全部
1证明:根据模3的余数,整数被分为3个等价类。根据抽屉原理,5个整数必有至少2个在同一等价类中,那么这两个数的差能被3整除。
2该命题为假。若5个整数均为奇数,则任取3个奇数,它们的和仍为奇数,不能被2整除。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式