第一型曲线积分,这道题怎么求

 我来答
勤苦又柔滑丶爱人a
2018-01-04 · 知道合伙人教育行家
勤苦又柔滑丶爱人a
知道合伙人教育行家
采纳数:752 获赞数:1033

向TA提问 私信TA
展开全部
设x=tant =>dx=d(tant)=sec²tdt ∴ ∫(1/√(1+x^2))dx =∫(1/sect)sec²tdt =∫sectdt =∫cost/(cost)^2 dt =∫1/(cost)^2 dsint =∫1/(1-(sint)^2) dsint 令sint = θ化为∫1/(1-θ^2)dθ=(ln|1+x|-ln|1-x|)/2+C =ln(√((1+θ)/(1-θ)))+C =ln|sect+tant|+C =lnl√(1+tan^2t)+tantl+c =lnl√(1+x^2)+xl+c
追问
不对吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式