个数,样本平均数,中位数,方差,标准差会怎样变化?
样本平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为
方差、标准差
方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为:
标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根:
为什么使用标准差?
与方差相比,使用标准差来表示数据点的离散程度有3个好处:
表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为6.4;两者相比较,标准差更适合人理解。
表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。
在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:66.7%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。
数据集只存在一个峰值。很简单,以假想的CPU使用率数据为例,如果50%的数据点位于20附近,另外50%的数据点位于80附近(两个峰),那么计算得到的平均值约为50,而标准差约为31;这两个计算结果完全无法描述数据点的特征,反而具有误导性。
这个峰值必须大致位于数据集中部。还是以假想的CPU数据为例,如果80%的数据点位于20附近,剩下的20%数据随机分布于30~90之间,那么计算得到的平均值约为35,而标准差约为25;与之前一样,这两个计算结果不仅无法描述数据特征,反而会造成误导。
平均值与标准差的适用范围及误用
大多数统计学指标都有其适用范围,平均值、方差和标准差也不例外,其适用的数据集必须满足以下条件:
中部单峰:
遗憾的是,在现实生活中,很多数据分布并不满足上述两个条件;因此,在使用平均值、方差和标准差的时候,必须谨慎小心。
如果数据集仅仅满足一个条件:单峰。那么,峰值在哪里?峰的宽带是多少?峰两边的数据对称性如何?有没有异常值(outlier)?为了回答这些问题,除了平均值、方差和标准差,需要更合适的工具和分析指标,而这,就是中位数、均方根、百分位数和四分差的意义所在。
中位数
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。(中位数:中位数是(n+1)/2位置上的值)
至于样本个数,从以上各个概念的公式中你也可以看到,平均值、中位数、方差、标准差等这些参数的大小都是跟样本个数即N有关的。
广告 您可能关注的内容 |