求过程,答案是左上角,定积分,谢谢大神 50
2个回答
展开全部
=1/(csc²x十sin²x)dx
sin²x=(1-cos2x)/2
代入
=1/[2/(1-cos2x)十 (1-cos2x)/2 ]dx
设t=tanx,x=arctant,dx=dt/(1十t²)
cos2x=cos²x-sin²x
=( cos²x-sin²x )/( cos²x十sin²x )
=(1-tan²x)/(1十tan²x)
=(1-t²)/(1十t²)
sin²x=(1-cos2x)/2
代入
=1/[2/(1-cos2x)十 (1-cos2x)/2 ]dx
设t=tanx,x=arctant,dx=dt/(1十t²)
cos2x=cos²x-sin²x
=( cos²x-sin²x )/( cos²x十sin²x )
=(1-tan²x)/(1十tan²x)
=(1-t²)/(1十t²)
追答
=1/[2/(1-(1-t²)/(1十t²))十(1-(1-t²)/(1十t²))/2]×1/(1十t²)×dt
= 1/[2 (1十t²) /( (1十t²) -(1-t²))十( (1十t²) -(1-t²))/2 (1十t²) ]×1/(1十t²)×dt
= 1/[(1十t²) /t²十t²/(1十t²) ]×1/(1十t²)×dt
= t²(1十t²)/[(1十t²)² 十t^4 ]×1/(1十t²)×dt
= t²/[(1十t²)² 十t^4 ]dt
= t²/[1十2t²十2t^4]dt
=t²/2[1/4十1/4十t²十t^4]dt
= 2t²/[1十(2t²十1)²]dt
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询