一道高数重积分应用题 半径为a,高为h的均匀圆锥体对中心轴的转动惯量为(密度为u)
展开全部
思路:最基本的物理公式:转动惯量I
I=∫ r²dm
然后再看题目的具体要求,看看是重积分,曲线积分还是曲面积分
先说下dm:
①重积分:二重积分dm=ρdσ,三重积分dm=ρdV;
②曲线积分:dm=ρds;
③曲面积分:dm=ρdS;
ρ:题目如果没具体说明或是均匀或只给个常数\代数,那么ρ就是个常数;如果给了ρ的方程,代入就好了.
r:表示与.的距离,比如说,在三维空间:
与x轴距离:那么公式中r²=y²+z²
与原点距离:那么公式中r²=x²+y²+z²
与平面yOz距离:那么公式中r²=x²
在二维平面:
与x轴距离:那么公式中r²=y²
与原点距离:那么公式中r²=x²+y²
等等
I=∫ r²dm
然后再看题目的具体要求,看看是重积分,曲线积分还是曲面积分
先说下dm:
①重积分:二重积分dm=ρdσ,三重积分dm=ρdV;
②曲线积分:dm=ρds;
③曲面积分:dm=ρdS;
ρ:题目如果没具体说明或是均匀或只给个常数\代数,那么ρ就是个常数;如果给了ρ的方程,代入就好了.
r:表示与.的距离,比如说,在三维空间:
与x轴距离:那么公式中r²=y²+z²
与原点距离:那么公式中r²=x²+y²+z²
与平面yOz距离:那么公式中r²=x²
在二维平面:
与x轴距离:那么公式中r²=y²
与原点距离:那么公式中r²=x²+y²
等等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询