求不定积分∫x(x² 1)²dx
5个回答
展开全部
∫x²√(1+x²)dx
令x=tanθ,
原式=∫tan²θsecθdtanθ
=∫tan²θsec³θdθ
=∫(sec²θ-1)sec³θdθ
=∫sec^5θdθ-∫sec³θdθ
∫sec^5θdθ
=∫sec³θdtanθ
=sec³θtanθ-∫tanθdsec³θ
=sec³θtanθ-3∫sec³θ*tan²θdθ
=sec³θtanθ-3∫sec³θ(sec²θ-1)dθ
=sec³θtanθ-3∫sec^5θ+3∫sec³θdθ
∫sec^5θ=sec³θtanθ/4+3/4∫sec³θdθ
∫sec^5θdθ-∫sec³θdθ=sec³θtanθ/4-1/4∫sec³θdθ
∫sec³θdθ
=∫secθdtanθ
=secθtanθ-∫tanθdsecθ
=secθtanθ-∫tan²θsecθdθ
=secθtanθ-∫(sec²θ-1)secθdθ
=secθtanθ-∫sec³θdθ+∫secθdθ
=secθtanθ-∫sec³θdθ+ln|secθ+tanθ|
∫sec³θdθ=(secθtanθ+ln|secθ+tanθ|)/2
sec³θtanθ/4-1/4∫sec³θdθ=sec³θtanθ/4-(secθtanθ+ln|secθ+tanθ|)/8
secθ=√(1+x²) tanθ=x
原式=(x+x³)√(1+x²)/4-(x√(1+x²)+ln|√(1+x²)+x|)/8
令x=tanθ,
原式=∫tan²θsecθdtanθ
=∫tan²θsec³θdθ
=∫(sec²θ-1)sec³θdθ
=∫sec^5θdθ-∫sec³θdθ
∫sec^5θdθ
=∫sec³θdtanθ
=sec³θtanθ-∫tanθdsec³θ
=sec³θtanθ-3∫sec³θ*tan²θdθ
=sec³θtanθ-3∫sec³θ(sec²θ-1)dθ
=sec³θtanθ-3∫sec^5θ+3∫sec³θdθ
∫sec^5θ=sec³θtanθ/4+3/4∫sec³θdθ
∫sec^5θdθ-∫sec³θdθ=sec³θtanθ/4-1/4∫sec³θdθ
∫sec³θdθ
=∫secθdtanθ
=secθtanθ-∫tanθdsecθ
=secθtanθ-∫tan²θsecθdθ
=secθtanθ-∫(sec²θ-1)secθdθ
=secθtanθ-∫sec³θdθ+∫secθdθ
=secθtanθ-∫sec³θdθ+ln|secθ+tanθ|
∫sec³θdθ=(secθtanθ+ln|secθ+tanθ|)/2
sec³θtanθ/4-1/4∫sec³θdθ=sec³θtanθ/4-(secθtanθ+ln|secθ+tanθ|)/8
secθ=√(1+x²) tanθ=x
原式=(x+x³)√(1+x²)/4-(x√(1+x²)+ln|√(1+x²)+x|)/8
展开全部
我们可以先把被积函数展开括号,得到:
∫x(x^4+2x²+1)dx
然后,我们可以对每一项进行不定积分:
∫x^4 dx + ∫2x² dx + ∫dx
接着,根据不定积分的公式,我们得到:
1/5x^5 + 2/3x³ + x + C
其中,C为常数。因此,原函数为:
1/5x^5 + 2/3x³ + x + C
∫x(x^4+2x²+1)dx
然后,我们可以对每一项进行不定积分:
∫x^4 dx + ∫2x² dx + ∫dx
接着,根据不定积分的公式,我们得到:
1/5x^5 + 2/3x³ + x + C
其中,C为常数。因此,原函数为:
1/5x^5 + 2/3x³ + x + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫x(x^2+ 1)^2 dx
=(1/2)∫(x^2+ 1)^2 d(x^2+1)
=(1/6)(x^2+ 1)^3 + C
=(1/2)∫(x^2+ 1)^2 d(x^2+1)
=(1/6)(x^2+ 1)^3 + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
显然[1+√(1+x)] *[1-√(1+x)]
=1 -1- x= -x
于是得到∫x/[1+√(1+x)]dx
=∫ -1+ √(1+x) dx
代入基本公式∫x^n dx=1/(n+1) *x^(n+1)
原积分= -x +2/3 *(1+x)^(3/2) +C,C为常数
=1 -1- x= -x
于是得到∫x/[1+√(1+x)]dx
=∫ -1+ √(1+x) dx
代入基本公式∫x^n dx=1/(n+1) *x^(n+1)
原积分= -x +2/3 *(1+x)^(3/2) +C,C为常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询