2个回答
展开全部
解由f(x)=3lnx-x²+(a-1/2 )x,在区间(1,3)有最大值,
知f(x)=3lnx-x²+(a-1/2 )x在区间(1,3)有极大值,
则f'(x)=3/x-2x+(a-1/2)
=(-2x^2+(a-1/2)x+3)/x
构造函数h(x)=-2x^2+(a-1/2)x+3 x属于(1,3)
则h'(x)=-4x+(a-1/2)
应有h'(x)<0恒成立
则a<4x+1/2=9/2
h(1)=-2+a-1/2+3>0
h(3)=-18+3(a-1/2)+3<0
即a<9/2
a>-1/2
a-1/2<5
综上知-1/2<a<7/2
知f(x)=3lnx-x²+(a-1/2 )x在区间(1,3)有极大值,
则f'(x)=3/x-2x+(a-1/2)
=(-2x^2+(a-1/2)x+3)/x
构造函数h(x)=-2x^2+(a-1/2)x+3 x属于(1,3)
则h'(x)=-4x+(a-1/2)
应有h'(x)<0恒成立
则a<4x+1/2=9/2
h(1)=-2+a-1/2+3>0
h(3)=-18+3(a-1/2)+3<0
即a<9/2
a>-1/2
a-1/2<5
综上知-1/2<a<7/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询