求微分方程y'+y/x=cosx/x满足条件x=π时y=1的特解

 我来答
茹翊神谕者

2021-09-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1674万
展开全部

简单计算一下即可,答案如图所示

历英耀计哲
游戏玩家

2020-02-27 · 非著名电竞玩家
知道大有可为答主
回答量:1.2万
采纳率:29%
帮助的人:824万
展开全部
解:∵y'+y/x=cosx/x==>xy'+y=cosx
==>xdy+ydx=cosxdx
==>d(xy)=d(sinx)
∴xy=sinx+C
(C是积分常数)
∵微分方程满足条件x=π时y=1
∴π*1=sinπ+C==>C=π
故原方程的解是:xy=sinx+π
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式