一道高中数学抛物线的题目 ....急求...在线等!!!!!!!

设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC平行x轴,求证直线AC经过原点O... 设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC平行x轴,求证直线AC经过原点O 展开
jw9811
2010-11-05 · TA获得超过1053个赞
知道小有建树答主
回答量:805
采纳率:0%
帮助的人:256万
展开全部
(分析法)
考虑到直线AB的斜率可能不存在,但一定不会为0,故:
设直线AB的方程为:x=ty+p/2,A(x1,y1),B(x2,y2),则C(-p/2,y2)
由y^2=2px与x=ty+p/2联立得:y^2-2pty-p^2=0
要证:直线AC经过原点O,
只需证:kOC=k0A 【直线OC的斜率与直线OA的斜率相等】
只需证:kOC=y2/(-p/2)
=k0A=y1/x1=y1/(p/2+ty1)
即:(-p/2)*y1=ty1*y2+(py2)/2
即:(-p/2)*(y1+y2)=ty1*y2
而在方程 y^2-2pty-p^2=0 中,y1+y2=2pt,y1*y2=-p^2,
则:(-p/2)*(y1+y2)=-tp^2=ty1*y2 显然成立。
从而原结论成立。

(综合法)
考虑到直线AB的斜率可能不存在,但一定不会为0,故:
设直线AB的方程为:x=ty+p/2,A(x1,y1),B(x2,y2),则C(-p/2,y2)
由y^2=2px与x=ty+p/2联立得:y^2-2pty-p^2=0
由韦达定理有:y1*y2=-p^2 =>y1=-p^2/y2
则:kOC=y2/(-p/2)
k0A=y1/x1=y1/[(y1*y1)/(2p)]=(2p)/y1=y2/(-p/2)
∴kOC=k0A
∴A、O、C三点共线
所以,直线AC经过原点O。

【本题用分析法证明思路更容易想到,思路明确之后可以再转化为
综合法书写】
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小骗骗子520
2010-11-18 · TA获得超过6607个赞
知道大有可为答主
回答量:1173
采纳率:0%
帮助的人:1857万
展开全部
过P1,P2分别做准线的垂线,垂足为分别为M,N , 取P1P2的中点为H,过H作准线的垂线,垂足为G。
根据高无限定义,放FP1=P1M,FP2=P2N,所以P1P2=FP1+FP2=P1M+P2N,而HG是四边形P1MNP2的中位线,所以HG=P1M+P2N的一半,即为P1P2的一半,所以HG为半径长,故相切。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友7f56690
2010-11-05 · 超过27用户采纳过TA的回答
知道答主
回答量:41
采纳率:0%
帮助的人:76.4万
展开全部
这里提供一种几何证法吧

令AC与x轴焦点为D 证D与O重合
知DF‖BC
则DF:BC=AF:AB
∵BC=BF
∴DF=AF×BF/AB
又令准线与x轴交于E
过A作AG平行x轴交CE与G
∵DE‖AG
∴DE:AG=CE:CG=BF:AB
∵AG=AF
∴DE=AF×BF/AB
∴DE=DF即EF中点
于是D与原点重合
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式