在△ABC中,角A,B,C所对的边分别是a,b,c,若三角形面积S=根号3/4(a^2+b^2-c^2),求sinA+sinB的最大值
2个回答
展开全部
由余弦定理
c²=a²+b²-2abcosC
即a²+b²-c²=2abcosC
∴S=(√3/2)abcosC
又∵S=(1/2)absinC
∴√3/2cosC=1/2sinC,√3=tanC
∴C=60°
∴A+B=120°,B=120°-A
sinA+sinB=sinA+sin(120°-A)
=sinA+cosAsin120°-sinAcos120°
=3/2sinA+√3/2cosA
=√3[(√3/2)sinA+(1/2)cosA]
=√3sin(A+30°)
0°<A<120°
∴当A=60°时,sinA+sinB有最大值√3
c²=a²+b²-2abcosC
即a²+b²-c²=2abcosC
∴S=(√3/2)abcosC
又∵S=(1/2)absinC
∴√3/2cosC=1/2sinC,√3=tanC
∴C=60°
∴A+B=120°,B=120°-A
sinA+sinB=sinA+sin(120°-A)
=sinA+cosAsin120°-sinAcos120°
=3/2sinA+√3/2cosA
=√3[(√3/2)sinA+(1/2)cosA]
=√3sin(A+30°)
0°<A<120°
∴当A=60°时,sinA+sinB有最大值√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询