三角形中线的性质是什么?
三角形的三条中线都在三角形内;三角形的三条中线交于一点,该点叫做三角形的重心;直角三角形斜边上的中线等于斜边的1/2;三角形重心将中线分为长度比为1:2的两条线段等。
设△ABC的角A、角B、角C的对边分别为a,b,c。
1、三角形的三条中线都在三角形内。
2、三角形的三条中线长:
ma=(1/2)√(2b²+2c²-a²)
mb=(1/2)√(2a²+2c²-b²)
mc=(1/2)√(2a²+2b²-c²)
(ma、mb、mc分别为角A,B,C所对边的中线长)
3、三角形的三条中线交于一点,该点叫做三角形的重心。
4、直角三角形斜边上的中线等于斜边的1/2。
5、角形中线组成的三角形面积等于这个三角形面积的3/4。
6、三角形重心将中线分为长度比为1:2的两条线段。
“中心”与“重心”很容易弄混淆,“中心”只存在于正三角形,也就是等边三角形当中。在等边三角形中,其内心,外心,重心,垂心都在一个点上,于是称之为中心。
内心:三角形的内心是三角形三条内角平分线的交点。
外心:三角形三条边的中垂线的交点叫作三角形的外心,即外接圆圆心 。
重心:三角形三条中线的交点叫作三角形的重心。
垂心:三角形三条垂线的交点叫作三角形的垂心。
如图1所示,BF,CD,AE分别为正三角形ABC的三条高,中线,角平分线,其交点P即为正三角形ABC的中心。