利用拉格朗日中值定理证明x>0时,x>arctanx
展开全部
设f(x)=x-arctanx
根据拉格朗日中值定理
则存在0<a<t<b使得
f'(t)=[f(b)-f(a)]/b-a
由于
f'(t)=1-1/(1+t^2)>0
从而
[f(b)-f(a)]/b-a>0
f(b)-f(a)>0
此函数为增函数
f(0)=0
从而当x>0时,x>arctanx</a<t<b使得
根据拉格朗日中值定理
则存在0<a<t<b使得
f'(t)=[f(b)-f(a)]/b-a
由于
f'(t)=1-1/(1+t^2)>0
从而
[f(b)-f(a)]/b-a>0
f(b)-f(a)>0
此函数为增函数
f(0)=0
从而当x>0时,x>arctanx</a<t<b使得
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-08-07 广告
2024-08-07 广告
在东莞市大凡光学科技有限公司,我们利用Halcon软件处理机器视觉项目时,会用到自定义标定板以满足特定需求。Halcon支持用户根据实际应用场景自定义标定板形状与标记点。这不仅可以灵活应对不同工作环境,还能提高标定精度。通过调整圆点数量、间...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询