若n为正整数,3+5+7+……+(2n+1)=168,则n=?
展开全部
(1)当n为偶数时
首尾两项相加3+(2n+1)=2n+4第二项与倒数第二项相加5+2n-1=2n+4,以此类推,相当于n/2个2n+4相加
所以得到方程(2n+4)*n/2=168解得n1=-14(舍去),n2=12
所以n=12
(2)当n为奇数时,中间项为2*(n+1)/2+1=n+2,还是首尾相加得2n+4,此时共有(n-1)/2个2n+4
所以得到方程(n+2)+(2n+4)*(n-1)/2=168,解得n1=-14,n2=12
综上(1)(2)所述,n=12
首尾两项相加3+(2n+1)=2n+4第二项与倒数第二项相加5+2n-1=2n+4,以此类推,相当于n/2个2n+4相加
所以得到方程(2n+4)*n/2=168解得n1=-14(舍去),n2=12
所以n=12
(2)当n为奇数时,中间项为2*(n+1)/2+1=n+2,还是首尾相加得2n+4,此时共有(n-1)/2个2n+4
所以得到方程(n+2)+(2n+4)*(n-1)/2=168,解得n1=-14,n2=12
综上(1)(2)所述,n=12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询