已知函数f(x)=ax+xlnx.?

 我来答
科创17
2022-10-24 · TA获得超过5877个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:171万
展开全部
解题思路:(1)求函数的导数,利用导数的几何意义求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;
(2)解对数不等式求得即可;
(3)由题意得问题等价于 k< f(x) x−1]=[x+xlnx/x−1]对任意x>1恒成立,令g(x)=[x+xlnx/x−1],利用导数求得函数的最小值即可得出结论.
(1),当a=1时.f(x)=x+xlnx.∴f′(x)=2+lnx,
∴f′(1)=2,f(1)=1,
∴切线方程为y-1=2(x-1),即y=2x-1…(2分)
(2)∵f(x)=ax+xlnx,又函数的定义域为(0,+∞),
∴f(x)<0⇔a+lnx<0,∴x∈(0,e-a)…(4分)
(3)由a=1时,对x∈(1,+∞)时,直线y=k(x-1)恒在函数y=f(x)的图象下方得,
问题等价于k<
f(x)
x−1=[x+xlnx/x−1]对任意x>1恒成立.…(5分)
令g(x)=[x+xlnx/x−1],∴g′(x)=[x−2−lnx
(x−1)2,
令h(x)=x-2-lnx,故h(x)在(1,+∞)上是增函数,
由于h(3)=1-ln3<0,h(4)=2-ln4>0
所以存在x0∈(3,4),使得h(x0)=x0-2-lnx0=0.
则x∈(1,x0)时,h(x)<0;x∈(x0,+∞)时,h(x)>0,
即x∈(1,x0)时,g'(x)<0;x∈(x0,+∞)时,g'(x)>0
知g(x)在(1,x0)递减,(x0,+∞)递增…(10分)
又g(x0)<g(3)=
3/2(ln3+1)<g(4)=2+2ln4,所以kmax=3.…(12分)

点评:
本题考点: 导数在最大值、最小值问题中的应用.

考点点评: 本题主要考查利用导数研究函数切线方程、单调性、最值等性质,考查学生的运算能力,综合性较强,难度较大.

1年前
2
回答问题,请先 登录 · 注册

可能相似的问题
你能帮帮他们吗

精彩回答
Copyright © 2021 YULUCN. - - 17 q. 0.052 s. - webmaster@ ,已知函数f(x)=ax+xlnx.
(1)当a=1时,函数f(x)的图象在点P(1,f(1))处的切线方程;
(2)当a<0时,解不等式f(x)<0;
(3)当a=1时,对x∈(1,+∞),直线y=k(x-1)恒在函数y=f(x)的图象下方.求整数k的最大值.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式