如图,已知双曲线y=k/x(k>0)与直线y=k'x交于A、B两点,点A在第一象限,?

 我来答
华源网络
2022-11-13 · TA获得超过5557个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:143万
展开全部
(1)因为正比例函数与反比例都关于原点成中心对称,所以B点的坐标为B(-4,-2);
由两个函数都经过点A(4,2),可知双曲线的解析式为y1= ,直线的解析式为y2= x,
双曲线在每一象限y随x的增大而减小,直线y随x的增大而增大,
所以当x<-4或0<x<4时,y1>y2.
(2)证明:∵正比例函数与反比例函数都关于原点成中心对称,
∴OA=OB,OP=OQ,根据对角线互相平分的四边形是平行四边形可知APBQ一定是平行四边形.
②∵A点的坐标是(3,1)
∴双曲线为y= 3/x
所以P点坐标为(1,3),
过A作x轴的垂线可得直角梯形,再过P做垂线的垂线,
用直角梯形的面积减去直角三角形的面积可得三角形POA的面积为4,再用4×4得四边形APBQ为16.
③当mn=k时,OA=OP,对角线相等且互相平分的四边形是矩形,所以四边形APBQ是矩形.,6,(1)∵双曲线和直线y=k'x都是关于原点的中心对称图形,它们交于A,B两点,
∴B的坐标为(-4,-2),
若点A的横坐标为m时(-m,-8/m );
(2)①由勾股定理OA= m2+(k′m)2 ,
OB= (-m)2+(-k′m)2 = m2+(k′m)2 ,
∴OA=OB.
同理可得OP=OQ,
所以四边形APBQ一定是平行四边形;,0,(1)(-4,-2) (-m,-k′m)或(-m,-k/m )

(2)①由勾股定理OA= √[m^2+(k′m)^2],
OB=√[(-m)^2+(-k′m)^2] = √[m^2+(k′m)^2]
∴OA=OB.
同理可得OP=OQ,
∴四边形APBQ一定是平行四边形.

②四边...,0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式