相似矩阵一定等价吗
1个回答
展开全部
矩阵AB相似,那么它们一定等价。根据定理相似的两个矩阵一定是等价的矩阵。按定义,如果存在可逆阵P、Q,使P*A*Q=B,则称A与B等价。
扩展资料
矩阵相似的.定义是:存在可逆阵P,使P^<-1>*A*P=B,则称A与B相似,因为P^<-1>与P都是可逆阵,由矩阵等价的定义知,A与B是等价的。元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询