简谐运动的动力学方程
简谐运动的动力学方程为:
简谐运动是最基本也最简单的机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。它是一种由自身系统性质决定的周期性运动(如单摆运动和弹簧振子运动)。实际上简谐振动就是正弦振动。
简谐运动的应用:
简谐振动是最简单最基本的振动,任何复杂的振动都可视为若干个简谐运动的合成。而振动和波动的基本规律又是声学、地震学、电工学、电子学、光学等的基础。
电工学:
在电工学中有一种正弦交流电路是,是线性电路中当激励(电压源或电流源)按某一正弦规律变化,响应(电压或电流)也为同频率的正弦量时,电路的这种工作状态称为正弦稳态。此时的电路称为正弦稳态电路,或正弦交流电路。
其中Im为正弦量的振幅,(ωt+φi)称为相位或相角,ω称为正弦量的角频率,它是正弦量的相位随时间变化的角速度。
结构动力学:
建筑结构的受力分为静力荷载和动力荷载,其中动力荷载中若荷载随时间变化较大时则需要进行动力荷载验算,如地震荷载。在动力荷载计算时,要以最简单的单自由度体系的自由振动为基础,如下图悬臂立柱结构可简化为一个弹簧振子模型。
其中A表示质点振动的最大位移,α为初相位。ω为自振频率,仅与结构体系自身的质量和刚度有关,它是表明结构动力性能的重要指标。
2024-10-30 广告