如图,在△ABC中,BE、CF,分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB 连结AD AG

天鬼隐市
推荐于2017-11-23 · TA获得超过1081个赞
知道小有建树答主
回答量:274
采纳率:0%
帮助的人:237万
展开全部
三角形ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG。
求证:1、AD=AG
2、AD与AG的位置关系如何。

证明:
1)
因为BE、CF为三角形ABC的高
所以∠ACG+∠BAC=90°,∠ABD+∠BAC=90°
所以∠ABD=∠ACG
又因为AB=CG,BD=AC,
所以△ABD≌△GCA(SAS)
所以AD=AG
2)
AD与AG的位置关系是垂直
证明:
因为△ABD≌△GCA
所以∠BAD=∠CGA
因为∠CGA+∠GAF=90°
所以∠BAD+∠GAF=90°
所以 ∠DAG=90°
所以AD⊥AG

参考资料: http://zhidao.baidu.com/question/159849979.html

廖曼容Am
2012-09-11 · TA获得超过633个赞
知道答主
回答量:411
采纳率:0%
帮助的人:136万
展开全部
1、证明:
∵BE⊥AC
∴∠AEB=90
∴∠ABE+∠BAC=90
∵CF⊥AB
∴∠AFC=∠AFG=90
∴∠ACF+∠BAC=90,∠G+∠BAG=90
∴∠ABE=∠ACF
∵BD=AC,CG=AB
∴△ABD≌△GCA (SAS)
∴AG=AD
2、AG⊥AD
证明
∵△ABD≌△GCA
∴∠BAD=∠G
∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90
∴AG⊥AD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式