求函数sinx^4dx的不定积分。
(sinx)^4
= (sinx^2)^2
= ((1 - cos2x)/2)^2
= (1 - 2cos2x + (cos2x)^2)/4
= 0.25 - 0.5cos2x + 0.125(1 + cos4x)
= (cos4x)/8 - (cos2x)/2 + 3/8
∫ (sinx)^4dx
= ∫ ((cos4x)/8 - (cos2x)/2 + 3/8)dx
= ∫ ((cos4x)/8)dx - ∫ ((cos2x)/2)dx + ∫ (3/8)dx
= (1/32)∫ cos4xd4x - (1/4)∫ cos2xd2x + (3x/8)
= (sin4x)/32 - (sin2x)/4 + (3x/8) + C
扩展资料:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
证明:如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数。因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。
因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
参考资料:百度百科——不定积分