有两个整数,他们和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数,求这两个整数
2个回答
展开全部
两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都可以表示成两个整数相加的形式,例如33=1+32=2+31=3+30=……=16+17,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有、111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111=37*3,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了.
把九个三位数分解:111=37*3、222=37*6=74*3、333=37*9、444=37*12=74*6、555=37*15、666=37*18=74*9、777=37*21、888=37*24=74*12、999=37*27.
把两个因数相加,只有(74+3)=77和(37+18)=55的两位数字相同.所以满足题意的答案是74和3,37和18.
(参考别人的)
把九个三位数分解:111=37*3、222=37*6=74*3、333=37*9、444=37*12=74*6、555=37*15、666=37*18=74*9、777=37*21、888=37*24=74*12、999=37*27.
把两个因数相加,只有(74+3)=77和(37+18)=55的两位数字相同.所以满足题意的答案是74和3,37和18.
(参考别人的)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询