已知在半径为2的球面上有ABCD 四 点,若AB=CD=2则四面体的体积最大值 为...... 那个
1个回答
展开全部
球心假设为O,则三角形ABO,三角形CDO都是边长为2的等边三角形,显而易见,当平面ABO与平面CDO垂直,且过O点的三角形ABO,三角形CDO的底边中线共线时,四面体ABCD的体积最大。
我这边上传不了图片,你可以照下边作图:
先画四面体ABCD,(要求如上)CD中点为E,AB中点为G,连接EG,AE,BE,过B作AE的垂线,垂足为F。
EG=2√3
AC=AD=BC=BD=√14
AE=BE=√13
三角形ACD的面积 S=AE*CD/2=√13*2/2 =√13
BF=AB*EG/AE=2*2√3 / √13 =4√39/13
四面体ABCD的体积 V=S*BF/3 =√13*4√39/39 =4√3/3
我这边上传不了图片,你可以照下边作图:
先画四面体ABCD,(要求如上)CD中点为E,AB中点为G,连接EG,AE,BE,过B作AE的垂线,垂足为F。
EG=2√3
AC=AD=BC=BD=√14
AE=BE=√13
三角形ACD的面积 S=AE*CD/2=√13*2/2 =√13
BF=AB*EG/AE=2*2√3 / √13 =4√39/13
四面体ABCD的体积 V=S*BF/3 =√13*4√39/39 =4√3/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询