∫xsin∧4(x)dx= ?急求 谢谢啦!
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励10(财富值+成长值)+提问者悬赏5(财富值+成长值)
展开全部
∫x(sinx)^4dx
=(1/4)∫x(1-cos2x)^2dx
=(1/4)∫[x-2xcos2x +x(cos2x)^2 ]dx
=(1/8)∫[2x-4xcos2x +x(1+cos4x) ]dx
=(1/8)∫[3x-4xcos2x +xcos4x ]dx
=(1/8)[(3/2)x^2-∫ 4xcos2xdx +∫xcos4x dx ]
consider
∫4xcos2xdx
=2∫xdsin2x
=2xsin2x - 2∫sin2x dx
=2xsin2x +cos2x
∫xcos4x dx
=(1/4)∫xdsin4x
=(1/4)xsin4x-(1/4)∫sin4xdx
=(1/4)xsin4x+(1/16)cos4x
∫x(sinx)^4dx
=(1/8)[(3/2)x^2-∫ 4xcos2xdx +∫xcos4x dx ]
=(1/8)[(3/2)x^2-2xsin2x -cos2x +(1/4)xsin4x+(1/16)cos4x ] + C
=(1/4)∫x(1-cos2x)^2dx
=(1/4)∫[x-2xcos2x +x(cos2x)^2 ]dx
=(1/8)∫[2x-4xcos2x +x(1+cos4x) ]dx
=(1/8)∫[3x-4xcos2x +xcos4x ]dx
=(1/8)[(3/2)x^2-∫ 4xcos2xdx +∫xcos4x dx ]
consider
∫4xcos2xdx
=2∫xdsin2x
=2xsin2x - 2∫sin2x dx
=2xsin2x +cos2x
∫xcos4x dx
=(1/4)∫xdsin4x
=(1/4)xsin4x-(1/4)∫sin4xdx
=(1/4)xsin4x+(1/16)cos4x
∫x(sinx)^4dx
=(1/8)[(3/2)x^2-∫ 4xcos2xdx +∫xcos4x dx ]
=(1/8)[(3/2)x^2-2xsin2x -cos2x +(1/4)xsin4x+(1/16)cos4x ] + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询