试分别用辗转相除法和更相减损术求840与1764、440与556的最大公约数

试分别用辗转相除法和更相减损术求840与1764、440与556的最大公约数.... 试分别用辗转相除法和更相减损术求840与1764、440与556的最大公约数. 展开
 我来答
Tester噿艊
2014-09-15 · TA获得超过167个赞
知道答主
回答量:145
采纳率:75%
帮助的人:65.7万
展开全部
(1)用辗转相除法求840与1764的最大公约数.
1764=840×2+84,840=84×10+0,
所以840与1764的最大公约数就是84.
(2)用更相减损术求440与556的最大公约数.
556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,
68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4.
∴440与556的最大公约数是4.
富港检测技术(东莞)有限公司_
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
乐事叠合呼
推荐于2016-12-05 · TA获得超过2.4万个赞
知道大有可为答主
回答量:4224
采纳率:59%
帮助的人:592万
展开全部
(1)用辗转相除法求840与1764的最大公约数.
1764=840×2+84,840=84×10+0,
所以840与1764的最大公约数就是84.
(2)用更相减损术求440与556的最大公约数.
556-440=116,440-116=324,324-116=208,208-116=92,
116-92=24,92-24=68,68-24=44,44-24=20,
24-20=4,20-4=16,16-4=12,12-4=8,8-4=4.
∴440与556的最大公约数是4
辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法, 其可追溯至3000年前。
算法:

设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q......r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用b除以r1,得b÷r1=q......r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2,……如此下去,直到能整除为止。其最后一个为被除数的余数的除数即为(a, b)。
例如:a=25,b=15,a/b=1......10,b/10=1......5,10/5=2.......0,最后一个为被除数余数的除数就是5,5就是所求最大公约数。

更相减损法:
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。
例如:
用更相减损术求98与63的最大公约数。
解:由于63不是偶数,把98和63以大数减小数,并辗转相减:
98-63=35 63-35=28 35-28=7 28-7=21 21-7=14 14-7=7
所以,98和63的最大公约数等于7。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sweet丶奈何
高粉答主

2015-11-06 · 每个回答都超有意思的
知道大有可为答主
回答量:2.8万
采纳率:82%
帮助的人:4779万
展开全部
(1)用辗转相除法求840与1764的最大公约数。
1764=840×2+84,840=84×10+0,
所以840与1764的最大公约数就是84。
(2)用更相减损术求440与556的最大公约数。
556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,
68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4
440与556的最大公约数是4。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式