(2009?湖北)如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa

(2009?湖北)如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈... (2009?湖北)如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0<λ≤2)(Ⅰ)求证:对任意的λ∈(0,2),都有AC⊥BE(Ⅱ)设二面角C-AE-D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ?tanφ=1,求λ的值. 展开
 我来答
茄子猫1440
推荐于2016-12-01 · TA获得超过283个赞
知道答主
回答量:119
采纳率:0%
帮助的人:156万
展开全部
(Ⅰ)证法1:如图1,连接BE、BD,由地面ABCD是正方形可得AC⊥BD.
∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE
(Ⅱ)解法1:如图1,由SD⊥平面ABCD知,∠DBE=φ,
∵SD⊥平面ABCD,CD?平面ABCD,∴SD⊥CD.
又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.
连接AE、CE,过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,
故∠CFD是二面角C-AE-D的平面角,即∠CFD=θ.
在Rt△BDE中,∵BD=2a,DE=λa∴tanφ=
DE
BD
λ
2

在Rt△ADE中,∵AD=
2
a
,DE=λa∴AE=a
λ2+2

从而DF=
AD?DE
AE
2
λa
λ2+2

在Rt△CDF中,tanθ=
CD
DF
λ2+2
λ

由tanθ?tanφ=1,得
λ2+2
λ
λ
2
=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消