如图(1),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F.(1)求证
如图(1),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F.(1)求证:CE=CF;(2)若AD=14AB,CF=...
如图(1),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F.(1)求证:CE=CF;(2)若AD=14AB,CF=13CB,△ABC、△CEF、△ADE的面积分别为S△ABC、S△CEF、S△ADE,且S△ABC=24,则S△CEF-S△ADE=______;(3)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示,试猜想:BE′与CF有怎样的数量关系?并证明你的结论.
展开
1个回答
展开全部
(1)证明:如图(1),
∵在Rt△ABC中,∠ACB=90°,CD⊥AB,
∴∠CDB=∠ACB=90°,
∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,
∴∠ACD=∠B,
∵AF平分∠CAB,
∴∠CAE=∠BAF,
∴∠ACD+∠CAE=∠B+∠BAF,
∴∠CEF=∠CFE,
∴CE=CF.
(2)解:∵S△ACB=24,AD=
AB,CF=
CB,
∴S△ACD=S△ADE+S△ACE=
×24=6①,
S△ACF=S△CEF+S△ACE=
×24=8②,
∴②-①得:S△CEF-S△ADE=8-6=2,
故答案为:2.
(3)BE′=CF,
证明:如图(2),过F作FH⊥AB于H,
∵CD⊥AB,
∴CD∥FH,
∴∠ECE′=∠HFB,
∵△ADE沿AB平移到△A′D′E′,
∴DE=D′E′,EE′=DD′,
∴四边形EDD′E′是平行四边形,
∴EE′∥AB,
∵∠CDB=90°,
∴∠CEE′=∠CDB=90°=∠FHB,
∵AF平分∠CAB,∠ACF=90°,FH⊥AB,
∴CF=FH,
∵CF=CE,
∴CE=FH,
在△CEE′和△FHB中
∴△CEE′≌△FHB(ASA),
∴CE′=BF,
∴CE′-FE′=BF-E′F,
即BE′=CF.
∵在Rt△ABC中,∠ACB=90°,CD⊥AB,
∴∠CDB=∠ACB=90°,
∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,
∴∠ACD=∠B,
∵AF平分∠CAB,
∴∠CAE=∠BAF,
∴∠ACD+∠CAE=∠B+∠BAF,
∴∠CEF=∠CFE,
∴CE=CF.
(2)解:∵S△ACB=24,AD=
1 |
4 |
1 |
3 |
∴S△ACD=S△ADE+S△ACE=
1 |
4 |
S△ACF=S△CEF+S△ACE=
1 |
3 |
∴②-①得:S△CEF-S△ADE=8-6=2,
故答案为:2.
(3)BE′=CF,
证明:如图(2),过F作FH⊥AB于H,
∵CD⊥AB,
∴CD∥FH,
∴∠ECE′=∠HFB,
∵△ADE沿AB平移到△A′D′E′,
∴DE=D′E′,EE′=DD′,
∴四边形EDD′E′是平行四边形,
∴EE′∥AB,
∵∠CDB=90°,
∴∠CEE′=∠CDB=90°=∠FHB,
∵AF平分∠CAB,∠ACF=90°,FH⊥AB,
∴CF=FH,
∵CF=CE,
∴CE=FH,
在△CEE′和△FHB中
|
∴△CEE′≌△FHB(ASA),
∴CE′=BF,
∴CE′-FE′=BF-E′F,
即BE′=CF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询