已知函数f(x)=|x-a|,g(x)=ax,(a∈R).(1)判断函数f(x)的对称性和奇偶性;(2)当a=2时,求使
已知函数f(x)=|x-a|,g(x)=ax,(a∈R).(1)判断函数f(x)的对称性和奇偶性;(2)当a=2时,求使g2(x)f(x)=4x成立的x的集合;(3)若a...
已知函数f(x)=|x-a|,g(x)=ax,(a∈R).(1)判断函数f(x)的对称性和奇偶性;(2)当a=2时,求使g2(x)f(x)=4x成立的x的集合;(3)若a>0,记F(x)=g(x)-f(x),试问F(x)在(0,+∞)是否存在最大值,若存在,求a的取值范围,若不存在,说明理由.
展开
1个回答
展开全部
(1)由函数f(x)=
可知,函数f(x)的图象关于直线x=a对称.
当a=0时,函数f(x)=|x|,显然是一个偶函数;
当a≠0时,取特殊值:f(a)=0,f(-a)=2|a|≠0.
即f(-x)≠
,
故函数f(x)=|x-a|是非奇非偶函数.
(2)若a=2,且g2(x)f(x)=4x
可得:x2|x-2|=x,得 x=0 或 x|x-2|=1;
因此得 x=0 或 x=1 或 x=1+
,
故所求的集合为{0,1,1+
}.
(3)对于 a>0,F(x)=g(x)-f(x)=ax-|x-a|=
若a>1时,函数F(x)在区间(0,a),[a,+∞)上递增,无最大值;
若a=1时
|
当a=0时,函数f(x)=|x|,显然是一个偶函数;
当a≠0时,取特殊值:f(a)=0,f(-a)=2|a|≠0.
即f(-x)≠
|
故函数f(x)=|x-a|是非奇非偶函数.
(2)若a=2,且g2(x)f(x)=4x
可得:x2|x-2|=x,得 x=0 或 x|x-2|=1;
因此得 x=0 或 x=1 或 x=1+
2 |
故所求的集合为{0,1,1+
2 |
(3)对于 a>0,F(x)=g(x)-f(x)=ax-|x-a|=
|
若a>1时,函数F(x)在区间(0,a),[a,+∞)上递增,无最大值;
若a=1时
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询