已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点。
已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点。(1)证明平面PED⊥平面PAB;(2)求二...
已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点。
(1)证明平面PED⊥平面PAB;(2)求二面角P-AB-F的平面角的余弦值。 展开
(1)证明平面PED⊥平面PAB;(2)求二面角P-AB-F的平面角的余弦值。 展开
2个回答
展开全部
(1)证明:连接BD
∵ AB=AD,∠DAB=60º
∴ 为等边三角形
∵E是AB中樱誉点
∴ AB⊥DE
∵ PD⊥面ABCD,AB 在面ABCD内,
∴ AB⊥PD
∵ DE在面PED内,PD在 面PED内,档搜DE∩PD=D
∴AB⊥ 面PED
∵AB在 面PAB内,
∴面PED⊥ 面PAB。
(2)∵ AB⊥平面PED,PE在 面PED内,
∴ AB⊥PE
连接EF,
∵EF在 面PED内,
∴ AB⊥EF
∴∠PEF 为二面角P-AB-F的平面角
设AD=2,那么PF=FD=1,DE= √3
在△PEF 中,PE=√7,EF=2,PE=1
∴cos ∠PEF=(2²+√7²-1)/2X2√7
即二面脊蠢段角P-AB-F的平面角的余弦值为 5√7/14。
∵ AB=AD,∠DAB=60º
∴ 为等边三角形
∵E是AB中樱誉点
∴ AB⊥DE
∵ PD⊥面ABCD,AB 在面ABCD内,
∴ AB⊥PD
∵ DE在面PED内,PD在 面PED内,档搜DE∩PD=D
∴AB⊥ 面PED
∵AB在 面PAB内,
∴面PED⊥ 面PAB。
(2)∵ AB⊥平面PED,PE在 面PED内,
∴ AB⊥PE
连接EF,
∵EF在 面PED内,
∴ AB⊥EF
∴∠PEF 为二面角P-AB-F的平面角
设AD=2,那么PF=FD=1,DE= √3
在△PEF 中,PE=√7,EF=2,PE=1
∴cos ∠PEF=(2²+√7²-1)/2X2√7
即二面脊蠢段角P-AB-F的平面角的余弦值为 5√7/14。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询