阅读材料 如图①,△ABC与△DEF都是等腰直角三角形,ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O
阅读材料如图①,△ABC与△DEF都是等腰直角三角形,ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直...
阅读材料 如图①,△ABC与△DEF都是等腰直角三角形,ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.解决问题:(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出 的值(用含α的式子表示出来)
展开
345348072
2014-11-24
·
TA获得超过137个赞
知道答主
回答量:133
采纳率:100%
帮助的人:64.7万
关注
(1)BF=CD.证明详见解析;(2)不成立, ;(3) . |
试题分析:本题是几何综合题,考查了旋转变换中相似三角形、全等三角形的判定与性质.解题关键是:第一,善于发现几何变换中不变的逻辑关系,即△BOF≌△COD或△BOF∽△COD;第二,熟练运用等腰直角三角形、等边三角形、等腰三角形的相关性质.本题(1)(2)(3)问的解题思路一脉相承,由特殊到一般,有利于同学们进行学习与探究.(1)如答图②所示,连接OC、OD,证明△BOF≌△COD,即可得到BF=CD; (2)如答图③所示,连接OC、OD,可证明△BOF∽△COD,进而求出相似比为 ;(3)如答图④所示,连接OC、OD,证明△BOF∽△COD,进而可求相似比为 . 试题解析: 解:(1)猜想:BF=CD.理由如下:如答图②所示,连接OC、OD. ∵△ABC为等腰直角三角形,点O为斜边AB的中点, ∴OB=OC,∠BOC=90°. ∵△DEF为等腰直角三角形,点O为斜边EF的中点, ∴OF=OD,∠DOF=90°. ∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF, ∴∠BOF=∠COD. ∵在△BOF与△COD中, ∴△BOF≌△COD(SAS), ∴BF=CD. (2)答:(1)中的结论不成立. 如答图③所示,连接OC、OD. ∵△ABC为等边三角形,点O为边AB的中点, ∴ ,∠BOC=90° ∵△DEF为等边三角形,点O为边EF的中点, ∴ ,∠DOF=90°. ∴ ∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF, ∴∠BOF=∠COD. 在△BOF与△COD中, ∵ ,∠BOF=∠COD, ∴△BOF∽△COD, ∴ . (3)如答图④所示,连接OC、OD. ∵△ABC为等边三角形,点O为边AB的中点, ∴ ,∠BOC=90° ∵△DEF为等边三角形,点O为边EF的中点, ∴ ,∠DOF=90°. ∴ ∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF, ∴∠BOF=∠COD. 在△BOF与△COD中, ∵ ,∠BOF=∠COD, ∴△BOF∽△COD, ∴ . |
收起
为你推荐: