如图,在△ABC中,∠ABC=90°,AB=BC,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°)

如图,在△ABC中,∠ABC=90°,AB=BC,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°),得到△EFD,点A的对应顶点是E,点B的对应... 如图,在△ABC中,∠ABC=90°,AB=BC,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°),得到△EFD,点A的对应顶点是E,点B的对应顶点是F,连接BE、CF。试判断BE与CF的长度是否相等,并说明理由。 展开
 我来答
状链忍2277
推荐于2016-09-27 · 超过70用户采纳过TA的回答
知道答主
回答量:128
采纳率:100%
帮助的人:129万
展开全部
BE=CF,理由见解析.


试题分析:根据已知条件得出BD=AD=CD.∠ADB=∠BDC=90°,再根据△ABD旋转得到△EFD,得出∠EDB=∠FDC,从而证出△BED≌△CFD,得出BE=CF.
试题解析:BE与CF的长度相等,理由如下:
∵∠ABC=90°,BD为斜边AC的中线,AB=BC,
∴BD=AD=CD.∠ADB=∠BDC=90°.
∵△ABD旋转得到△EFD,
∴∠EDB=∠FDC.
在△BED和△CFD中,

∴△BED≌△CFD.
∴BE=CF.
考点: 1.旋转的性质;2.直角三角形斜边上的中线.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式