已知函数f(x)=(ax-2)ex在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;

已知函数f(x)=(ax-2)ex在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(... 已知函数f(x)=(ax-2)ex在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤e. 展开
 我来答
长门淮TA81
推荐于2016-12-01 · 超过57用户采纳过TA的回答
知道答主
回答量:101
采纳率:0%
帮助的人:128万
展开全部
(Ⅰ)f'(x)=aex+(ax-2)ex=(ax+a-2)ex
由已知得f'(1)=0,即(2a-2)e=0,
解得:a=1,
验证知,当a=1时,在x=1处函数f(x)=(x-2)ex取得极小值,所以a=1;
(Ⅱ)f(x)=(x-2)ex,f'(x)=ex+(x-2)ex=(x-1)ex
x (-∞,1) 1 (1,+∞)
f'(x) - 0 +
f(x)
所以函数f(x)在(-∞,1)上递减,在(1,+∞)上递增.
当m≥1时,f(x)在[m,m+1]上单调递增,fmin(x)=f(m)=(m-2)em
当0<m<1时,m<1<m+1,f(x)在[m,1]上单调递减,在[1,m+1]上单调递增,fmin(x)=f(1)=-e.
当m≤0时,m+1≤1,f(x)在[m,m+1]单调递减,fmin(x)=f(m+1)=(m?1)em+1
综上,f(x)在[m,m+1]上的最小值fmin(x)=
(m?2)emm≥1
?e,0<m<1
(m?1)em+1m≤0

(Ⅲ)由(Ⅰ)知f(x)=(x-2)ex,f'(x)=ex+(x-2)ex=(x-1)ex
令f'(x)=0得x=1,
因为f(0)=-2,f(1)=-e,f(2)=0,
所以fmax(x)=0,fmin(x)=-e,
所以,对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤fmax(x)-fmin(x)=e,
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式