已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e为自然对数的底数.(Ⅰ)若g(x)在(1,g(1))处

已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e为自然对数的底数.(Ⅰ)若g(x)在(1,g(1))处的切线l与直线x-3y-5=0垂直,求a的值;(... 已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e为自然对数的底数.(Ⅰ)若g(x)在(1,g(1))处的切线l与直线x-3y-5=0垂直,求a的值;(Ⅱ)求f(x)在x∈[0,2]上的最小值;(Ⅲ)试探究能否存在区间M,使得f(x)和g(x)在区间M上具有相同的单调性?若能存在,说明区间M的特点,并指出f(x)和g(x)在区间M上的单调性;若不能存在,请说明理由. 展开
 我来答
国度OJPN
2014-09-11 · TA获得超过242个赞
知道小有建树答主
回答量:142
采纳率:40%
帮助的人:68.6万
展开全部
(Ⅰ)∵g(x)=ax-lnx,∴g(1)=a,g′(x)=a-
1
x

∵g(x)在(1,g(1))处的切线l与直线x-3y-5=0垂直,
g′(1)×
1
3
=-1
?(a-1)?
1
3
=-1?a=-2
…(3分)
(Ⅱ)f(x)的定义域为R,且 f'(x)=ex+a.
令f'(x)=0,得x=ln(-a).   …(4分)
若ln(-a)≤0,即-1≤a<0时,f′(x)≥0,f(x)在x∈[0,2]上为增函数,
∴f(x)min=f(0)=1;…(5分)
若ln(-a)≥2,即a≤-e2时,f′(x)≤0,f(x)在x∈[0,2]上为减函数,
f(x)min=f(2)=e2+2a; …(6分)
若0<ln(-a)<2,即-e2<a<-1时,
由于x∈[0,ln(-a))时,f'(x)<0;x∈(ln(-a),2]时,f'(x)>0,
∴f(x)min=f(ln(-a))=aln(-a)-a
综上可知f(x)min=
1,-1≤a<0
e2+2a,a≤-e2
aln(-a)-a,-e2<a<-1
…(8分)
(Ⅲ)g(x)的定义域为(0,+∞),且 g′(x)=a-
1
x
=
ax-1
x

∵a<0时,∴g'(x)<0,∴g(x)在(0,+∞)上单调递减.…(9分)
令f'(x)=0,得x=ln(-a)
①若-1≤a<0时,ln(-a)≤0,在(ln(-a),+∞)上f'(x)>0,∴f(x)单调递增,
由于g(x)在(0,+∞)上单调递减,
∴不能存在区间M,使得f(x)和g(x)在区间M上具有相同的单调性;…(10分)
②若a<-1时,ln(-a)>0,在(-∞,ln(-a))上f'(x)<0,f(x)单调递减;
在(ln(-a),+∞)上f'(x)>0,f(x)单调递增.
由于g(x)在(0,+∞)上单调递减,
∴存在区间M?(0,ln(-a)],使得f(x)和g(x)在区间M上均为减函数.
综上,当-1≤a≤0时,不能存在区间M,使得f(x)和g(x)在区间M上具有相同的单调性;当a<-1时,存在区间M?(0,ln(-a)],使得f(x)和g(x)在区间M上均为减函数.…(13分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式