已知数列{an}满足an=2an-1+2n-1(n≥2),a1=5,bn=an?12n(Ⅰ)证明:{bn}为等差数列; (Ⅱ)求数列{
已知数列{an}满足an=2an-1+2n-1(n≥2),a1=5,bn=an?12n(Ⅰ)证明:{bn}为等差数列;(Ⅱ)求数列{an}的前n项和Sn....
已知数列{an}满足an=2an-1+2n-1(n≥2),a1=5,bn=an?12n(Ⅰ)证明:{bn}为等差数列; (Ⅱ)求数列{an}的前n项和Sn.
展开
1个回答
展开全部
解答:(I)证明:∵an=2an-1+2n-1(n≥2),∴an?1=2(an?1?1)+2n,
∴
=
+1.∴bn=bn-1+1.
∴{bn}是首项为
=
=2,公差为1的等差数列;
(II)解:由(I)可得bn=2+(n-1)×1=n+1,
∴
=n+1,∴an=(n+1)?2n+1,
令cn=(n+1)?2n,其前n项和为Tn,
则Tn=2×2+3×22+4×23+…+n?2n-1+(n+1)?2n,
2Tn=2×22+3×23+…+n?2n+(n+1)?2n+1,
两式相减得-Tn=2×2+22+23+…+2n-(n+1)?2n+1=2+
-(n+1)?2n+1=-n?2n+1,
∴Tn=n?2n+1.
∴Sn=Tn+n=n+n?2n+1.
∴
an?1 |
2n |
an?1?1 |
2n?1 |
∴{bn}是首项为
a1?1 |
2 |
5?1 |
2 |
(II)解:由(I)可得bn=2+(n-1)×1=n+1,
∴
an?1 |
2n |
令cn=(n+1)?2n,其前n项和为Tn,
则Tn=2×2+3×22+4×23+…+n?2n-1+(n+1)?2n,
2Tn=2×22+3×23+…+n?2n+(n+1)?2n+1,
两式相减得-Tn=2×2+22+23+…+2n-(n+1)?2n+1=2+
2(2n?1) |
2?1 |
∴Tn=n?2n+1.
∴Sn=Tn+n=n+n?2n+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询