求微分方程yy''-(y')^2=0的通解

 我来答
帐号已注销
推荐于2019-10-26 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:178万
展开全部

微分方程yy''-(y')^2=0的通解解法如下:

对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。例如:

其通解为:

扩展资料

对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解(general solution)。

求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解

参考资料:百度百科通解

lihung6
推荐于2019-09-28 · TA获得超过1.7万个赞
知道答主
回答量:26
采纳率:0%
帮助的人:7908
展开全部

微分方程yy''-(y')^2=0的通解
解:
令y'=p,then  y''=p(dp/dy)
so. yp(dp/dy)-p^2=0
so. dp/p=dy/y(if p isn't 0)
so . y'=C1y
so .ln y=C1x+ln C2
so .y=C2e^(C1x)
if .p=0,then y=C

扩展资料:

含义:含有未知函数的导数,如的方程都是微分方程。一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。

对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解(general solution)。

求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解

定义式:f(x,y',y'',…``…y(n))=0

参考资料:

百度百科-微分方程



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wqyjieseba
2019-01-07
知道答主
回答量:8
采纳率:0%
帮助的人:2369
展开全部
解 令u=y' 即u=dy/dx (这个如果不知道,说明你微分还不会)
y"=du/dx=u×du/dy(这一步很关键,这个不会后面就别看了)
原式改写为 y×u'=u²接着用到可分离变量方法(这个不会说明你常微分方程没学好)
y×u×du/dy=u²
(1/u)du=(1/y)dy
因为∫(1/x)dx=ln|x|+c(c为任意常数,这一步要求你知道这个柿子,要是不会说明你不定积分没学好)
两侧同时积分得ln|u|+c1=ln|y| +c2
常数c1,c2合并,左右两侧对数号合并
则 ln|u/y|=C
那么 |u/y|=e^C(e的C次方)
u/y=±e^C (发现右边这柿子是一个非0常数)不妨设它为c,由于y=0是该微分方程的一个特解(这个不知道说明你常微分方程没学好),那么u=0是允许的,那么c=0也是可以的,所以c代表包括0的任意常数
那么 u=cy
而u=y'=dy/dx
则dy/dx=cy
(1/y)dy=cdx
由于∫(1/y)dy=ln|y|+c1 ∫cdx=cx+c2(c1,c2属于R)
两侧同时积分 并且把常数c1c2合并,记为c1
所以 ln|y|=cx+c1
y=±e^(cx+c1)
因为±e^(cx+c1)=±e^c1×e^cx
又±e^c1可以记为常数c1(c1可以为0)所以还可以化简
y=c1e^cx
参考答案一般写的是
y=e(c1x+c2)
两者之间等价

同学祝你成功,加油!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友af34c30f5
推荐于2017-07-27 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:7108万
展开全部

更多追问追答
追问

最后答案是这个,和你的不一样
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
h河伯
2018-12-20
知道答主
回答量:2
采纳率:0%
帮助的人:1717
展开全部

课本例题

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式