若1/1*3+1/3*5+1/5*7.....+1/(2n-1)(2n+1)的值为17/35,求正整数n的值
4个回答
展开全部
首先要知道
1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)],这样求和就方便求了
1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)
=1/2[1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]
=1/2[(1-1/(2n+1)]=17/35
所以求得 n=17
1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)],这样求和就方便求了
1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)
=1/2[1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]
=1/2[(1-1/(2n+1)]=17/35
所以求得 n=17
参考资料: MythGemin
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/1*3+1/3*5+1/5*7.....+1/(2n-1)(2n+1)=17/35
两边乘2
2/1*3+2/3*5+2/5*7.....+2/(2n-1)(2n+1)=34/35
1-1/3+1/3-1/5+1/5-1/7.....+1/(2n-1)-1/(2n+1)=34/35
1-1/(2n+1)=34/35
1/(2n+1)=1/35
2n+1=35
n=17
两边乘2
2/1*3+2/3*5+2/5*7.....+2/(2n-1)(2n+1)=34/35
1-1/3+1/3-1/5+1/5-1/7.....+1/(2n-1)-1/(2n+1)=34/35
1-1/(2n+1)=34/35
1/(2n+1)=1/35
2n+1=35
n=17
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/2<log1/2(x)<1/2
(1/2)^-1/2>x>(1/2)^1/2
√2>x>√2/2
反函数的值域就是函数定义域
所以时 (√2/2,√2)
/2^y=1-x
反函数y=1-1/2^x
1/2^x递减
则y递增
所以增区间是R
(1/2)^-1/2>x>(1/2)^1/2
√2>x>√2/2
反函数的值域就是函数定义域
所以时 (√2/2,√2)
/2^y=1-x
反函数y=1-1/2^x
1/2^x递减
则y递增
所以增区间是R
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询