初中数学教学怎样渗透数学思想方法

 我来答
wxmao88
2016-12-01 · 知道合伙人教育行家
wxmao88
知道合伙人教育行家
采纳数:29716 获赞数:532720
截止目前,采纳数达到2.9万,采纳率达97%,已升至19级。

向TA提问 私信TA
展开全部
数学思想方法是将数学知识转化为数学能力的桥梁,是解决数学问题的学科核心。现实中许多学生和教师觉得数学是一门枯燥无味的学科,老师教得很累,学生学得很辛苦,到头来还是成绩很差,这主要是在教学中没有注重数学思想的渗透,学生没有领悟和利用数学思想方法去解决问题。在初中数学教学中如何渗透数学思想方法,提高教学质量,成为一个探究内容。
一、初中数学思想方法
在初中数学蕴含着多种思想方法,但最基本的数学思想方法是函数与方程、数形结合、分类讨论、问题转化几种思想方法。
1.函数与方程思想
函数思想是指变量与变量之间的一种对应思想。方程思想则指把研究数学问题中已知量与未知量之间的数量关系,转化成方程或方程组等数学模型。例如:某工程队要招聘甲、乙两种工种的工人700人,甲、乙两种工种的工人的月工资分别为800元和1200元,现要求乙种工种的工人数不少于甲种工种人数的3倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?
2.代数与图形结合思想
代数与图形结合思想就是常说的数形结合思想,是数学中最古老和最普遍一种思想方法,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。例如:如图所示:初中数学教学中如何渗透数学思想方法 <wbr>黄家超比较a,-a,b,-b的大小 简析:在数轴上指出-a,-b两个数表示的点,四数大小关系就一目了然。再如:有一十字路口,甲从路口出发向南直行,乙从路口以西1500米处向东直行,已知甲、乙同时出发,10分钟后两人第一次距十字路口的距离相等,40分钟后两人再次距十字路口距离相等,求甲、乙两人的速度。 简析:画出“十字’图,分析两人在10分钟、40分钟时的位置,有图分析列出方程组。
3.数学分类讨论思想
初中数学课本中有不少定理、公式法则、练习题,都需要我们去分类讨论,在教学这些内容时,应有有意识不断强化学生分类讨论的思想,让学生认识到这些问题,只有通过分类讨论后,得到的结论才是完整的、正确的,如不分类讨论,就很容易出现遗漏或错误。在解题教学中,通过分类讨论还有利于帮助学生概括,总结出规律性的东西,从而加强学生思维的条理性,缜密性。例如学习有理数后,对字母a与0的大小比较,还有一次函数y=(k-1)x+b的图像分布情况,需要进行分类讨论。
4.问题的转化思想
转化思想也称化归思想,它是指将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题,从而使问题顺利解决的数学思想。三角函数,几何变换,因式分解等数学理论无不渗透着转化的思想。常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,联想转化,类比转化等。如二元一次方程组,三元一次方程组的解决实质就是化为已学过的一元一次方程。
二、在教学中渗透数学思想方法的途径
在数学教学的每一个知识环节里都蕴含数学思想方法,通过多种途径,激发学生的学习兴趣,渗透数学思想方法,提高学生学习效率。
1.在探究知识过程中,注重渗透数学思想方法
新课标要求,教学注重学生的知识形成过程,特别是定理、性质、公式的推导过程和例题的求解的过程,基本数学思想和数学方法都是在这个过程中形成和发展的,因而教师在讲授概念、性质、公式的过程中应重视推导过程,知识生成发展中把握时机不断渗透相关的数学思想方法,让学生在掌握表层知识的同时,又能领悟到深层数学思想方法,从而使学生思维产生质的飞跃。在教学过程中要引导学生主动参与结论的探索、发现、推导过程,搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体会创造性思维活动中所经历和应用到的数学思想和方法。
2. 通过范例和解题教学,综合运用数学思想方法  
教师在教学中,对例题的认真分析,思考如何指导学生在范例中培养数学思想。在教学时,教师做好解题和反思活动,每次完成一个数学问题和范例就要向学生总结归纳解题方法,形成成数学思想,重视解决数学问题的过程,运用数学思想方法在解题途径中发生联想和转化,而初中数学新教材中,设计许多典型范例,每年中考题目中也出现很多优秀题目,教师善于选择具有启发性和创造性的题目进行练习,在对这些问题的分析和思考的过程中展示数学思想和教学方法,提高学生的解题思维能力。
3.及时小结逐步内化数学思想方法
数学思想是隐含在教材数学知识体系中,一个内容可蕴含多种不同的数学思想方法,常常在许多不同的基础知识之中运用同一数学思想方法,教师在讲解一道题目后,要揭示解题思路,涉及到的知识点和用到的思想方法,也可以鼓励学生谈谈自己的解题的思维过程,教师随后出一些相关题目给学生以进行强化刺激,让学生学会归纳、概括数学思想方法,在学生的脑海里有意识地内化数学思想,促使学生认识从感性到理论性的飞跃。
4.在解决问题过程中,不断加深数学思想方法
在教学中,往往出现学生当时听懂了,但是课后解题,特别是遇到新题就无所适从,其原因就是教师在教学中,拿到题目就把题目解答出来,遇到同类题目就照旧机械操作,学生感到厌烦疲劳,因此,在探究数学问题中,引导学生学会思考,从问题中真正领悟蕴含于数学问题中的思想方法。
数学题海无边,数学的思想方法却有限。我们教学中,对数学基础知识要强化巩固,过程要渗透和掌握基本的数学思想方法,学生会用方法解决问题。利用好教材,认真分析例题的编写意图,精选范例,在教师和学生的教与学的活动中,渗透和归纳数学思想方法,把学习的数学知识转化成学习数学的能力,让学生能轻松、愉快地学习数学,提高数学成绩。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式