
极限存在准证lim(1/(n2+n+1 )+2/(n2+n+2...+n/(n2+n+n)=1/
极限存在准证lim(1/(n2+n+1)+2/(n2+n+2...+n/(n2+n+n)=1/2...
极限存在准证lim(1/(n2+n+1 )+2/(n2+n+2...+n/(n2+n+n)=1/2
展开
2个回答
展开全部
分子不动,将分母改成相同的,则
2(n2+n+1)分之n(n+1)≤n2+n+1分之一+n2+n+2分之2+……+n2+n+n分之n≤2(n2+n+1)分之n(n+1)
又因为lim2(n2+n+1)分之n(n+1)等于lim2(n2+n+n)分之n(n+1)=二分之一,所以根据夹逼准则,原式=二分之一
2(n2+n+1)分之n(n+1)≤n2+n+1分之一+n2+n+2分之2+……+n2+n+n分之n≤2(n2+n+1)分之n(n+1)
又因为lim2(n2+n+1)分之n(n+1)等于lim2(n2+n+n)分之n(n+1)=二分之一,所以根据夹逼准则,原式=二分之一
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询