为什么在极值点的导数为零,但是导数为零得点不一定

 我来答
轮看殊O
高粉答主

2019-04-30 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:726万
展开全部

导数为0,是指函数的切线水平,水平切线有两种情况:

一种是象y=x平方,这个函数在x=0的样子,这种是极值点

另一种是y=x立方,这个函数在x=0的样子,这种叫做拐点

另外,并非极值点导数都为0,应该说可导函数的极值点导数都为0

因为极值点也可能导数不存在,比方说y=|x|在x=0的情况,把这三个函数图像画出来一比较就能看出来了.

扩展资料

对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。

这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)

记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0

匿名用户
2017-05-24
展开全部
第一,极值点的导数不一定是0,可能是不可导点。
比方说f(x)=|x|,这个函数,x=0是极小值点,但是这个函数在x=0点处不可导,极小值点处导数不是0
第二,导数为0,当然不一定是极值点,
比方说f(x)=x³,这个函数,x=0点处的导数是0,但是这个点不是这个函数的极限值,这个函数没有极值点。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式